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Abstract. Inthis paper we give aderivation for the allometric scaling relation between the
metabolic rate and the mass of animals and plants. We show that the characteristic scaling
exponent of 3/4 occurring in thisrelation is aresult of the distribution of sources and sinks
within the living organism. We further introduce a principle of least mass and discuss the
kind of flows that arise fromiit.

1. Introduction

In 1947 M. Kleiber [5](see aso [8]) found a remarkable relationship between the
metabolic rate B and the mass M of animals or plants. The data showed that these
two quantities are related by an allometric scaling law of the form

B = BoM? , @)

where the scaling exponent y isto avery good approximation given by 3/4 and Bg
is some constant (see figure 1). We will refer to it as Kleiber's law.

Since this law has been found it has been a challenge to explain the scaling
exponent 3/4 which is of the curiousform D/(D + 1), where D isthe dimension
of space. Thefirst successful attempt wasmadeby T. A. McMahon [ 7] who derived
thelaw from his principle of elastic similarity. The following attempts concentrated
on specia properties of the transportation networksinside animalsor plantsthat are
responsible for distributing blood or sap respectively to the cells of the organism
[12][1]. We will show that less detailed assumptions about the system have to be
made in order to arrive at the scaling law.

In[3] it has been shown that the properties of the transportati on network are not
decisivefor the characteristic exponent of D/(D + 1). It israther the distribution of
sinks and sourcesin aliving animal or plant that is responsible for the occurrence
of this particular scaling exponent. The fact that animals and plants are what we
call constant source systemsis what gives the characteristic scaling exponent. We
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Fig. 1. A double logarithmic plot of the metabolic rate vs. the mass for an assortment of
animals. The straight line shows a scaling exponent of 3/4. The data for the plot is taken
from[5].

will give a precise definition of a constant source system and will show that the
scaling law follows.

After Kleiber's discovery allometric scaling laws were found in other systems
aswell. One exampleisthe drainage basin of ariver. In[1] it isshown that the mass
of theriver and the area of the drainage basin follow ascaling law with an exponent
of 2/3. An example of a one-dimensional system that exhibits scaling is given in
[3] where the flow through a tube is investigated. It is found that the amount of
water in the tube and its length are related by a scaling law with exponent 1/2. Our
derivation of the scaling law appliesto all these systems.

The distribution of sinks and sources in an organism does not in general fix the
flow of blood or sap uniquely. One may thus ask for the conditions that unique-
ly determine the flow. It seems reasonable to require here that the mass of the
transportation network is as low as it can be while still providing the organism
with the required nutrients. We will discuss the kind of flow that follows from this
requirement.

The paper isthus organized asfollows. In thefirst section weintroduce constant
source systems and give amathematically precise definition of them. In the second
section we derive the scaling exponent from general properties of constant source
systems. We then introduce a variational principal that corresponds to asking that
the mass of the organism be the minimal mass possible and derive the flow that
results from this principle. We further give a few examples. We close with some
general remarks.
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2. Constant source systems

In both animals and plants nutrients have to be supplied to the whole organism
from a central source. In the case of animals this source is the heart; for plants it
is the stem that connects the plant to its roots. It is also true that the amount of
nutrientsthat are required per volumeisroughly constant throughout the organism.
Asin [3] we conceptualize these two properties, the central source and the constant
distribution of sinks, in the following definition:

Definition 1. A constant source systemisatriple (V, ] ¢), where V isaregular
domaint in R? which containsthe origin, j isa vector field defined in a neighbor-
hood of V with the possible exception of the origin, and ¢ € R is a constant such
that

V.j=Ad0+c @
jLlav =0, ©)

vyhere A. € Risa constant, do is the Dirac delta distribution? at the origin, and
J1 isthe component of j that is perpendicular to the tangent space of 9V .

The reason why we index the constant A, with ¢ isthat it is determined by c,
as the following lemma shows:

Lemmal. Let (V, f) be a constant source system. Then
A, = —c Vol(V). 4

Proof. From Gauss's theorem we infer

/v-}dvzf jdo =0, (5)
Vv aVv

since f is perpendicular to the normal of the boundary V. On the other hand it
follows from equation (2) that thisintegral equals A, + ¢ Vol (V). Our result thus
follows. O

The definition deserves some discussion. Equation (2) describes the sources of
the flow ] Aswe have discussed above it consists of two terms; the central source
represented by the deltadistribution and a constant distribution of sinks represented
by the constant c. Equation (3) expresses the fact that no blood or sap leaves the
organism. The flow j isthusrequired to be paralléd to the boundary 9V of V.

Before turning to the allometric scaling law we give a simple example of a
central source system.

1 v isthus a manifold with boundary contained in R”. For more details see [11, p. 145]
2 For more information about distributions see [10].
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Example 1. Let V betheball B of radius R around theoriginin R?. If we resgrict
ourselves to spherically symmetrical solutions we can easily find the flow ;. It
follows from spherical symmetry that the flow ] has to be radial. Using Gauss's
theorem as in the previous lemmawe can cal culate the magnitude j (r) of the flow
j@ forr <R.
We get

op r?tj(r) =cawp (R® =), (6)
whereop and wp arethe surface area and volume of the D - dimensional unit ball
respectively. The flow isthen

T c RPY _
Here we have used the fact that the guotient of wp and op isequal to the inverse
of D. Itiseasily checked that (Bg, j, c) isaconstant source systemin R,

3. Allometric scaling

In this section we want to derive the allometric scaling law along the lines of [3].
To this end we have to identify the quantities that correspond to the metabolism B
and the mass M of the organism in our model.

The metabolism B of the organism is proportional to the amount of nutrients
delivered to the system. Since we assume that we have a constant distribution of
sinks described by the constant ¢ in equation (2) this amount is proportional to the
volume of V. The metabolism is then proportional to

B = Vol(V). (8)

To find the quantity corresponding to the mass of the animal we have to use a
rel ation between the mass of the animal and the mass of the blood or sap contained
in the animal. It has been found [9] that these quantities are proportional to each
other. It thus suffices to calculate the mass of the blood or sap contained in the
organism. Given the flow ] this can be done using the equation

j=p7, 9
which relatesthe flow to the density p of the flowing medium anditsvelocity v. We
now make a simplifying assumption. We assume that the velocity of the flowing
medium is roughly constant throughout the organism. This assumption is however
not necessary for the derivation of the scaling law. The constant velocity can be
thought of as the average velocity of the medium. Under this assumption the mass
of the blood or sap is then obtained by integrating the magnitude of ] over the
volume V. The mass of the animal is then proportional to the quantity

M:/Vm dv. (10)

Now that we have identified the quantities A and B we want to investigate how
they changeif we scaletheregion V by some positive parameter s > 0, i.e. replace
V by s - V. The crucial observation here is made in the following proposition (see
figure 2):
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Fig. 2. Thearrowsin thisfigure represent the flow of the medium transporting the nutri ents
inside the lizards. The key observation that leads to the allometric scaling law isthat if j (7)

isaflow in the unscaled region V then sf(?/s) isaflow for the scaled region s V. Thisis
represented in the figure by arrows of increased length in the bigger of the two lizards.

Proposition 1. Let V be a regular domain in RP. Then (V, f(?), ¢) isa constant
source system if and only if (sV, sj(7/s), ¢) is a constant source system, for all
s > 0.

Proof. The gradient of s (7/s) isgiven by

V-sj@Ffs) = (V- )(F/s). (1)
Thescaled flow thusgivesriseto aconstant source systemif and only if theunscaled
flow does. |

This proposition has the allometric scaling law as a corollary:

Corollary 1. Let(V, j, ¢) beaconstant sourcesystem. Let 7 and B1 bethequanti-
tiesintroduced in equations (8) and (10) respectively. The corresponding quantities
M, and By calculated for the scaled constant source system (s V, s j (7 /s), ¢) given
by proposition 1 then satisfy

M, = sP (12)
B; = sP él (13)

Furthermore M, and B, are related through the allometric relation
By, = Bo M1, (14)
for a constant By and all s > O.

Proof. Since the volume scales like s” we immediatly fi nd equation (13). Equa-
tion (12) follows from the scaling behaviour of the flow j which was derived in
proposition 1. A simple transformation of the integration variable gives

M, = / Isj(F/s)|dv = sD+1/ 1) |dv = sP M. (15)
sV \%



Allometric scaling in animals and plants 149

Eliminating the scaling parameter s in equations (12) and (13) we find equation
~ D/D+1
. i

(14) where the constant By is given by By/M;

With our identification of M and B with the mass M and the metabolism B
of the organism respectively we recover the allometric scaling relation (1) from
equation (14).

A few remarks are in order. To identify our quantity A with the mass M of the
organism we had to assume that the vel ocity of the blood or sap is roughly constant
throughout the organism. To develop the alometric scaling law we have to go a
little further. We have to assume that the velocity does change much for different
species. This assumption has been checked for mammals [4] and is reasonable for
plantsto assume because the principl e behind thetransport hereisosmosis. Therate
of osmosis depends only on the properties of the membrane and the concentration
of the solutions and is thus independent of the size and form of the plant. Since
Kleiber's law (1) is valid over severa orders of magnitude it can not happen that
the velocity scales like any appreciable power of the scaling parameter because the
speeds involved would become too large.

Another question that we haveto addressiswhy nature should choosethe scaled
flow given in proposition 1 for the scaled region. In the next section we will show
that two constant source systemswithregions vV and s V are both minimal in asense
defined in the next section if and only if they are related in the way described in
proposition 1. If nature thus adheres to this optimization principle the scaled flow
is chosen and we obtain the allometric scaling behaviour asin equation (1).

4. A variational principle

In this section we investigate the kind of flow that originates from the requirement
that the mass of thetransportation systemisassmall asit can bewhilestill providing
the organism with nutrients. We formalize thisin the following definition.

Definition 2. Let (V, ] c) be a constant source systemin R?. (V,j, ¢) iscalled
minimal if and only if there is no other constant source system (V, j’, ¢) such that

/|j’|dv<f 17l dv. (16)
\%4 \%4

We now want to find the flow ] of aminimal constant source system. To do this
we apply variational methods to the integral occurring in equation (16). Since we
are dealing with a constant source system we have to ensure that the flow satisfies
V . j = cinsideof V. This can be achieved by introducing a Lagrange multiplier
A. The variational principle that we get isthus

a/ 17l +A(V -] —c)dv=0. (17)
V—Bo(r)

Because of the singular behaviour of the sources of f at the origin we exclude a
ball Bo(r) of small but arbitrary radius» > 0 around the origin from the region of
integration.
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The equations arising from this variational principle are given in the next
proposition:

Proposition 2. The Euler — Lagrange equations arising from the variational
principle (17) are

|&A.1

Vi = (19)

~.l

|
Proof. Carriying out the variation (17) gives

e (S-)
/ I dv=0 (20)
V—Bo(r) H

Since the variation §A of A is arbitrary we immediately find equation (18).
Integrating by parts the second term in equation (20) gives the following result
for the remaining terms

/ L w) 8] dv=0. (22)
V—Bo(r) \IJl

Because (Sf is arbitrary we obtain equation (19). |

Example 2. The constant source system given in example 1 is minimal. Since the
flow is radial it is easy to see that the Langrange multiplier A in this example is
nothing but the radial coordinate r.

In the next section we look for solutions to equations (18) and (19).

Before concluding this section we investigate how minimal constant source
systems behave under scaling. As we have aluded to in the last section scaling
preserves minimality:

Lemma2. Let (V, f(?), ¢) be a constant source system. It is minimal if and only
if sV,sj(#/s),c)isminimal for all s > 0.

Proof. Assume that (V, ] ¢) is aminimal constant source system and assume
furthermore that (soV, so ](r/so) ¢) isnot minimal for some sg > 0. Then there
existsaflow ] "such that (sqV, j’, ¢) isaconstant source system and

/ |/ ()| dF < / |50 (F/s0)| dF. (22)
soV soV

If we perform a change of variables asin the proof of corollary 1 to proposition 1
we find

/ 17 (s07) /50| dF < f Hol (23)
1% \%

Thisisacontradiction to our assumption that (V, ] ¢) isaminimal constant source
system. The other implication is proved similarly. |
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5. Minimal flows

In this section we want find constant source systems that satisfy equation (19).
Taking the square of equation (19) we find

Vi-Vi=1 (24)

Thisequation hasthe form of aHamilton - Jacobi equation for aparticle movingin
D dimensions. Such equations can be solved using the method of characteristics.

If A isasolution to equation (24) the characteristics are a congruence of curves
with the property that the tangent vector at any point of one of the curves equals
the gradient of A at that point. If the congruence is given by o (z; s), where the
parameter s labels the different curves in the congruence and ¢ is the parameter
along the curves, this condition trandlates to

% o(t;s) = VA(o(t;s)), (25)

forall s andr.
We now want to find the characteristics in our problem.

Lemma 3. The characteristics for equation (24) are straight lines.
Proof. Writing equation (24) in coordinates and differentiating with respect to x;

gives

a a 0
—A——21=0. (26)
3)6,' 3)Cj 3)6,'

The jth-component of the second ¢-derivative of o (¢; s) on the other hand is given
by
2
T3 09 = Z——A(o(r s))—o,(t 5) (27)

- Z 2956 s))—)»(U(t ), (28)

0x; 0x;

where we have used equation (25) twice. Comparing equations (27) and (26) gives

2

2 o(t;s) = (29

from which we infer that the characteristics are straight lines. O

Example 3. In example 1 the characteristics are of the form 17, where 7 is a unit
vector in RP.
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We now want to show that this example reflects the general situation. Asin the
case of the ball the characteristics are lines. For a certain class of regionsthey are
even radia as in the case of the ball. To show this we introduce some technical
notations. .

Let p € V apoint such that j(p) # 0. Let Ao be the value of the function A
a p. Then there exists a neighborhood U of 0 € RP~1 and a diffeomorphism f
which maps U into V such that

A(f(x)) = ko, (30)

foral x € U. Thediffeomorphism f gives thus coordinates on the surface defined
by A(¢) = Ao. Since j(p) # Owecanassumethat j doesnot vanishforall p € U’

Using the diffeomorphism f we can now define a coordinate system p for a
whole neighborhood of p. We set

p:UxR— RP (31)
(x, 1) — tVA(f(x)) + f(x)

From lemma 3 we know that the flow ] will be along the the lines on which the
coordinate x is constant. The flow can thus be written in the form

j = xi, (32)
for some real function yx. Here? denotes the coordinate field corresponding the

coordinate . We now want to find the differential equation that governs . Since j
is aconstant source system we find

c=Vj (33)
=;-Vx+xv§. (35

Now;A isthe normal unit vector to the surfacegivenby A = Ao+t anditsdivergence
is related to the mean curvature H of that surface®. One finds

1 2
H=— Vt.
D—1t (36)

We summarize our results in the following proposition:

Proposition 3. Let p € V besuch that_j( p) # 0andlet p bethe coordinate system
introduced in equation (31). The flow j can then be written in the form

j=xi 37)
where x isareal valued function satisfying the differential equation
FVy—(D—1xH=c. (39)

Here H isthe mean curvature of the surface normal to the vector field 7.

3 See[2] for definitions and more details.
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This proposition has a couple of important corollaries that will allow us to
calculate the flow for more general examples.

Corollary 2. Let V be a compact region in R?. Then no characteristic that does
not go through the origin intersects the boundary 8 V transversely* in two different
points.

Proof. Letsassumethat o (1) isacharacteristic that does not go through the origin
and intersects the boundary 9V in two points. We know from equation (3) that the
flow f vanishes at these points. We will show that thisis in contradiction to the
behaviour of the function x along the characteristic.

Let ¥ () and H(r) be the functions x and H evaluated on the characteristic
which we parameterize by 7. We assume that + = 0 for one of the intersection
points. From equation (38) we see that

dx -
d—’f(r) —(D-DFOH@) =c. (39)

If we set ;
h(r) = / H(s) ds (40)
0

we can write the solution to (39) as follows

t
x(1) =c exp((D— 1)h(t))/o exp(—(D — Dh(s)) ds. (41)

It is clear that for any finite r > O this expression is not equa to zero. Since V
is assumed to be compact it follows that the ¢ parameter will be finite when the
characteristic intersects with the boundary of V again. Since the value of x is not
zero we obtain acontradiction to equation (3). No such characteristic can thusexist.

|

For spheres or ellipsoids al straight lines going through them intersect the
boundary transversely in two points. For such regions we can calculate the flow j
immediately.

Corollary 3. Let V beacompact regionin R? with the property that every straight
line that passes through the interior of V intersects the boundary oV transversely
intwo points. Then all characterlstl csare straight lines emanating fromthe origin.
They are thus of the form tr where 7 isa unit vector.

Proof. This follows directly from the previous corollary 2. Since all the straight
lines intersect the boundary transversely they have to go through the origin. They
arethus of the form ¢7. |

The last corollary alows us to calculate the flow ] for the class of regions
introduced there.

4 This means that the velocity vector of the characteristic at the boundary is not included
in the tangent space of aV at that point.
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Lemma4. Let V beasinthe previous corollary and set ¢: to be the distance from

the origin to the boundary dV in the direction of 7. Then the flow J can be written
as

J) = x: (7, (42)
where the function x: is given by

dP
c 2
x:(r) = ) (1 — —er> r. (43)

Thequantity M defined in equation (10) isthen given by thefollowing integral over
the unit sphere

W= /dQ dP+1, (44)
D+1 ;

Proof. It follows form the last corollary that the characteristics are of the form rF.
Theflow j can thus be written in the form of equation (42). Calculating the diver-
gence of this equation or using equation (38) and realizing that the mean curvature
is given by the inverse of theradial coordinate » we obtain

dx; D-1
_+—
dr r

This equation can be solved immediately. The solution is given by equation (43).
Finally carrying out the radial integration in equation (10) leads to the expression
given for M in equation (44). O

X =c. (45)

Example 4. For aball of radius R we have d; = R, for all unit vectors 7. If we use
this ¢z in equation (43) to calculate ] we recover equation (7).

Example 5. We next look at atwo dimensional ellipse. If « and b arethe main axis
of the ellipse the distance d; is given by
b
ds = a , (46)
\/bz cos? ¢ + a?sin ¢

where ¢ isthe angle that 7 makes with the axis of length a. Together with formu-
la (42) and (45) this gives the flow j for the ellipse. Using equation (44) we can
calculate M. We obtain
~ AZ? 2 4
M=—E(—-—).
w2 <€2 — 1) (“47)

In the last formulawe have expressed M in terms of the area A and eccentricity e
of the ellipse®. The function E isthe complete elliptic integral®.

5 Interms of the parametersa and b onehas A = wab and ¢ = (a® — b?)/a?.
6 See[6] for more information on eliptic integrals.
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Fig. 3. Thisgraph depictsthe dependence of the mass M on the eccentricity e of the ellipse
or ellipsoid for a fixed metabolism. The mass has been set to one for zero eccentricity.

With this result we can investigate how for a given metabolism the mass de-
pends on the shape of the organism. Figure 3 shows how the mass varies with the
eccentricity of theellipse. Only for very elongated shapesfor which the eccentricity
is close to one does one find an appreciable increase in the mass. For these shapes
more and more energy is needed to sustain the transportation network.

Example 6. As afina example we want to discuss the three dimensional ellipsoid.
If the axis of the ellipsoid are a, b, and ¢ the distance ¢: is given by

- _1/2
0 = (sin29 (c082¢ n u> + coszec—lz> . (48)

a? b

Theangles¢ and 6 aretheusua polar coordinatesin the coordinate system spanned
by the principal axis of the ellipsoid such that x (y, z) - axis coincides with the axis
of the élipsoid having the length a (b, ¢ respectively).

Alsoin this example we want to find the quantity M corresponding to the mass
of the organism. We restrict ourselves here to the case wherea = b < c. In this
case the shape is that of a rotational ellipsoid and can as in the two dimensional
case be described by its eccentricity e. We obtain

) 9 \23 1

Ll (—) V431 — %13 (1 + = Arctanh(e) — e Arctanh(;z)) .
2 \ 1672 e

(49)

Asinthe previous example we have expressed the result in terms of the eccentricity
e and the volume V7.

7 For an éllipsoid the volume V is given by gnabc.
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We can again ask the question of how for agiven metabolism the mass changes
with the shape. The answer is given in figure 3. Asin the case of the two dimen-
sional ellipse the graph shows appreciabl e dependence on the shape only for values
of the eccentricity that are close to one.

6. Conclusion

As it was shown in [3] the characteristics of a constant source system lead to an
explanation of the allometric scaling relation found in animals and plants. The
general nature of the argument explains why the scaling law holds for such alarge
variety of organisms of such different sizesand forms. No specia knowledge of the
transportation networks inside the organism are required to derive the scaling law.
What isimportant are not the specifics of the networksbut thetask it hasto perform.
Namely to evenly supply the body with whatever it needs from a central source.
Thisiswhat characterizes a constant source system and thisiswhat isresponsible
for the characteristic scaling exponent.

We have derived the scaling law here for ageneral space dimension. To explain
Kleiber's law adiscussion of three dimensional space would have been sufficient.
We gave the general derivation because other cases do exist in nature. An exam-
ple for atwo dimensional constant source system is the drainage basin of ariver
(for detailssee[1]). Another examplefor two dimensional constant source systems
might be the leaves of plants. Since sunraysonly penetrate afew layersof aleaf the
task of catching sun raysis essentially atwo-dimensional one. We thus conjecture
that the surface area of leaves and their mass follow an allometric scaling relation
asin equation (1) with atwo-thirds scaling exponent. It would be interesting to see
whether this prediction is true.
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